Endohedral Fullerenes

DOI: 10.1002/anie.200802584

Observation of ¹³C NMR Chemical Shifts of Metal Carbides Encapsulated in Fullerenes: Sc₂C₂@C₈₂, Sc₂C₂@C₈₄, and Sc₃C₂@C₈₀**

Yuko Yamazaki, Koji Nakajima, Takatsugu Wakahara, Tsuchiya Tsuchiya, Midori O. Ishitsuka, Yutaka Maeda, Takeshi Akasaka,* Markus Waelchli, Naomi Mizorogi, and Shigeru Nagase*

Endohedral metallofullerenes have attracted special interest as promising spherical molecules for material and catalytic applications, because of their unique properties that are not expected from empty fullerenes.[1-3] The successful isolation and purification of endohedral metallofullerenes in macroscopic quantities have made it possible to investigate the structures as well as the electronic properties and reactivities through a close interplay between theory and experiment. Since the first isolation and characterization of a metal carbide encapsulated metallofullerene (Sc₂C₂@C₈₄) by MEM (maximum entropy method)/Rietveld analysis of synchrotron powder diffraction data, [4] much attention has been paid to encapsulation of metal carbides. Recently, we found by ¹³C NMR spectroscopy and X-ray single-crystal structure analyses that Sc_3C_{82} and Sc_2C_{84} have the structures $Sc_3C_2@$ $C_{80}(I_h)^{[5]}$ and $Sc_2C_2@C_{82}(C_{3\nu})^{[6,7]}$ encapsulating metal carbides, although it had long been believed from the MEM/Rietveld analyses that they have the conventional structures $Sc_3@C_{82}^{[8]}$ and $Sc_2@C_{84}^{[9]}$, respectively. The encapsulation of metal carbides has been confirmed by the recent improved MEM/ Rietveld analyses of $Y_2C_2@C_{82}(C_{3\nu})^{[10]}$ as well as $Sc_2C_2@$ $C_{82}(C_{3\nu})^{[11]}$ and $Sc_3C_2@C_{80}(I_h)$. [12] However, attempts to detect the ¹³C NMR chemical shifts of the C₂ units of metal carbides encapsulated in the fullerenes have not been yet success-

[*] Dr. Y. Yamazaki, K. Nakajima, Dr. T. Wakahara, Dr. T. Tsuchiya, Dr. M. O. Ishitsuka, Prof. Dr. T. Akasaka

Center for Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan)

Fax: (+81) 29-853-6409

E-mail: akasaka@tara.tsukuba.ac.jp

Homepage: http://www.tara.tsukuba.ac.jp/~akasaka-lab/

Dr. N. Mizorogi, Prof. Dr. S. Nagase

Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan)

Fax: (+81) 56-453-4660 E-mail: nagase@ims.ac.jp

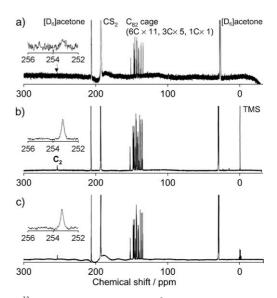
Dr. Y. Maeda

Department of Chemistry, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan)

Dr. M. Waelchli

Bruker Biospin, Co. Ltd., Tsukuba, Ibaraki 305-0051 (Japan)

[**] Y.Y. thanks the Japan Society for the Promotion of Science (JSPS) for the Research Fellowship for Young Scientists. This work was supported in part by a Grant-in-Aid, Nanotechnology Support Project, The Next Generation Super Computing Project (Nanoscience Project), and Scientific Research on Priority Area from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

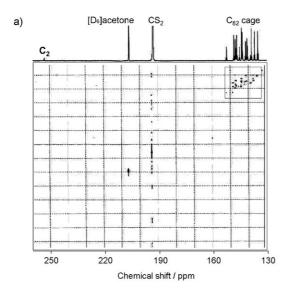


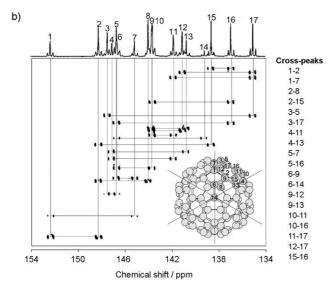
Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.200802584.

ful.^[13,14] This unsuccessful detection has been explained in term of the spin-rotation interaction, because the C_2 unit may rotate rapidly inside carbon cages. It is an important task to observe the ¹³C NMR chemical shift of the C_2 unit in an attempt to provide insight into its electronic and magnetic properties.

We present herein the first detection of the 13 C NMR chemical shifts of the C_2 unit in $Sc_2C_2@C_{82}(C_{3\nu})$, $Sc_2C_2@C_{84}(D_{2d})$, and $[Sc_3C_2@C_{80}(I_h)]^-$ by using 13 C-enriched samples. We also successfully assigned all 13 C NMR chemical shifts of the cage carbon atoms for the three compounds by 2D INADEQUATE (incredible natural abundance double quantum transfer experiment) NMR measurements.

The $^{13}\text{C NMR}$ spectrum of Sc₂C₂@C₈₂(C_{3\nu}) (Figure 1 a) shows 17 chemical shifts of the C₈₂ cage at $\delta = 134.6 - 151.9$ ppm, as reported previously. $^{[6]}$ To map the bond connectivity in the carbon cage and assign the $^{13}\text{C NMR}$




Figure 1. ¹³C NMR (125 MHz) spectra of a) $Sc_2C_2@C_{82}(C_{3\nu})$ in proton-decoupled mode (CS₂, 298 K) and ¹³C-enriched $Sc_2C_2@C_{82}(C_{3\nu})$ in b) proton-decoupled (CS₂, 298 K) and c) proton-coupled modes. A capillary tube containing [D₆]acetone was used as an internal lock.

chemical shifts, a 2D INADEQUATE NMR measurement^[15] of ¹³C-enriched $Sc_2C_2@C_{82}(C_{3\nu})$ was performed (Figure 2). Bonded carbon atoms share a double quantum frequency in the vertical dimension, and each peak appears at the respective chemical shifts in the horizontal dimension. For the $C_{82}(C_{3\nu})$ cage, a total of 19 cross-peaks should be observed. As shown in Figure 2 b, all the cross-peaks were observed and

Communications

Figure 2. a) INADEQUATE NMR (125 MHz) spectrum of ¹³C-enriched $Sc_2C_2@C_{82}(C_{3\nu})$ in CS₂ at 298 K and b) the expanded spectrum between $\delta=134$ and 154 ppm. A capillary tube containing $[D_6]$ acetone was used as an internal lock. $[Cr(acac)_3]$ was used as a relaxation reagent.

the ^{13}C NMR chemical shifts of the C_{82} cage were completely assigned, as recently done for $[La@C_{82}]^{-[16]}$ and $[Ce@C_{82}]^{-.[17]}$

We now focus on the chemical shift at $\delta = 253.2$ ppm observed for the 13 C-enriched sample of $Sc_2C_2@C_{82}(C_{3\nu})$. As Figure 1 b, c shows, the peak was observed in both proton-decoupled and proton-coupled modes, which indicates that it originates from a quaternary carbon atom. An INVGATE (inverse-gated decoupling) sequence was used for quantitative 13 C NMR spectral analysis. As is apparent from Table 1, the chemical shift at $\delta = 253.2$ ppm originates from two carbon atoms. No cross-peak was observed for the chemical shift at $\delta = 253.2$ ppm (Figure 2a), but cross-peaks were observed for those of the C_{82} cage carbon atoms. This result indicates that the two carbon atoms responsible for the chemical shifts at $\delta = 253.2$ ppm have no bonding with cage carbons. The 13 C NMR chemical shifts of $Sc_2C_2@C_{82}(C_{3\nu})$ were calculated at the B3LYP-GIAO level. [18] For the most stable

Table 1: ^{13}C NMR signals for $Sc_2C_2@C_{82}(C_{3\nu})$ and their integration.

Signal	Integral	Signal	Integral	Signal	Integral
C ₂	2.04 (2C)	5, 6	9.04 (9C)	14	1.17 (1C)
1	3.00 (3C)	7	3.29 (3C)	15	6.53 (6C)
2	6.32 (6C)	8–10	18.37 (18C)	16	6.02 (6C)
3	6.36 (6C)	11	6.26 (6C)	17	6.40 (6C)
4	3.34 (3C)	12, 13	9.42 (9C)		

optimized structure, two slightly different chemical shifts were calculated for the C_2 unit, because the optimized structure has C_1 symmetry (Figure 3a). The calculated chemical shifts at $\delta = 276.3$ (C_a) and 277.2 ppm (C_b) (Figure 3b) agree reasonably well with the experimental value at

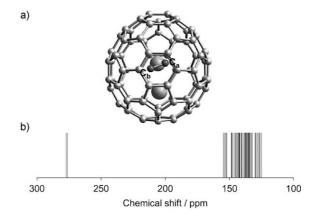


Figure 3. a) Optimized structure of $Sc_2C_2@C_{82}(C_{3\nu})$ and b) its calculated chemical shifts.

 δ = 253.2 ppm. These results show that the chemical shift at δ = 253.2 ppm is due to the C₂ unit in Sc₂C₂@C₈₂(C_{3 ν}). It should be emphasized that ¹³C NMR measurement of Sc₂C₂@C₈₂(C_{3 ν}) performed without ¹³C-enrichment does not show a clear chemical shift for the C₂ unit because of the low signal-to-noise ratio (see Figure 1a).

The carbon–carbon bond lengths of the C_2 unit in $Sc_2C_2@$ $C_{82}(C_{3\nu})$ and its adamantylidene adduct are 1.273 Å and 1.107(6) Å, respectively, corresponding to a triple bond distance, as shown by theoretical calculations^[7] and X-ray single-crystal structure analysis.^[7] Theoretical studies reveal that the electronic structure of $Sc_2C_2@C_{82}(C_{3\nu})$ is formally described as $Sc_2^{6+}C_2^{2-}C_{82}^{4-}$.^[7]

The chemical shift of the C_2 unit in $Sc_2C_2@C_{82}(C_{3\nu})$ ($\delta=253.2$ ppm) is observed at a much lower field than that of acetylene ($\delta=71.6$ ppm). The scandium acetylide compound $Cp_2^*ScC\equiv CScCp_2^*$ ($Cp^*=$ pentamethylcyclopentadienyl) shows a ^{13}C NMR chemical shift for the acetylenic carbon atom at a relatively low field ($\delta=179.4$ ppm). The positive charge of the Sc atom may be the reason for these observed downfield chemical shifts. The solid-state ^{13}C NMR measurement of lithium acetylide (Li_2C_2) also gives a low field chemical shift at $\delta=195\pm10$ ppm. The geometry of the metal cation relative to the acetylide dianion may influence the chemical shift. As supported by these data, it is not surprising that the chemical shift of the C_2 unit in

 $Sc_2C_2@C_{82}(C_{3y})$ appears at a low field because of the dianion character of the C₂ unit.

The dynamic behavior of the C₂ unit should be reflected in the 13 C NMR line width. The line width for the C_2 unit (30 Hz) is five times broader than those for cage carbon atoms (e.g., C1: 6.2 Hz) at 298 K. We carried out the variable-temperature ¹³C NMR measurements of $Sc_2C_2@C_{82}(C_{3\nu})$. Interestingly, broadening of the 13C NMR line width for the C2 unit was observed with increasing temperature from 253 to 303 K owing to spin-rotation relaxation, as found for the 139 La NMR spectra of La₂@C₈₀,^[22] suggesting that the C₂ unit rotates inside the C₈₂ cage (Figure 4). In contrast, such line-width broadening was not observed for the C₈₂ cage carbon atoms with increasing temperature.

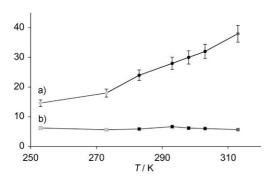


Figure 4. Line widths of the ¹³C NMR chemical shifts of a) the C₂ unit and b) the C1 carbon in the C_{82} cage for ^{13}C -enriched $Sc_2C_2@C_{82}(C_{3\nu})$ as a function of temperature. Dark gray (150 MHz in [D₄]-o-dichlorobenzene), black (125 MHz in CS₂), and light gray (150 MHz in CS₂).

¹³C NMR spectra of ¹³C-enriched Sc₂C₂@C₈₄(D_{2d}) were measured over a considerably wide range. The chemical shift of the C_2 unit was observed at $\delta = 249.2$ ppm in both protondecoupled and proton-coupled modes (see Figure S1 in the Supporting Information). The chemical shift at $\delta = 249.2$ ppm is not clearly observed without ¹³C-enrichment (Figure S1). The value of $\delta = 249.2$ ppm is close to that of $\delta = 253.2$ ppm for $Sc_2C_2@C_{82}(C_{3\nu})$, which suggests that the magnetic environment around the Sc_2C_2 unit of $Sc_2C_2@C_{84}(D_{2d})$ is similar to that of $Sc_2C_2@C_{82}(C_{3\nu})$. It has been reported that the ¹³C NMR chemical shift of the C_2 unit for $Sc_2C_2@C_{84}(D_{2d})$ is $\delta =$ 91.99 ppm. [46] However, the reported signal at $\delta = 91.99$ ppm is ascribed to an impurity, as no important chemical shift is observed in that region by the present ¹³C-enriched NMR study.

We also mapped the bond connectivity in the carbon cage of $Sc_2C_2@C_{84}(D_{2d})$ and assigned the ¹³C NMR chemical shifts by 2D INADEQUATE NMR measurement (Figure S2 in the Supporting Information). [23] For $C_{84}(D_{2d})$, a total of 13 crosspeaks should be observed. Eleven cross-peaks were observed, and ¹³C NMR chemical shifts of the C₈₄ cage were assigned fully (Figure S2). The cross-peak between C1 and C2 was not observed, because C1 and C2 show almost identical ¹³C NMR chemical shifts. For the same reason, the cross-peak between C3 and C4 was also not observed.

Since $Sc_3C_2@C_{80}(I_h)$ is paramagnetic, ¹³C NMR spectra of the $[Sc_3C_2@C_{80}(I_h)]^-$ anion were measured with the ¹³Cenriched sample. The ¹³C-enriched anion was prepared chemically with pyridine, as described previously.^[5] The chemical shift of the C_2 unit was observed at $\delta = 328.3$ ppm in both proton-decoupled and proton-coupled modes (Figure S3 in the Supporting Information). The line width for the C₂ unit (108 Hz) is three or more times broader than that of $Sc_2C_2@C_{82}(C_{3y})$ (30 Hz) at 298 K. As in the cases of $Sc_2C_2@$ $C_{82}(C_{3\nu})$ and $Sc_2C_2@C_{84}(D_{2d})$, the ¹³C NMR spectrum of $[Sc_3C_2@C_{80}(I_h)]^-$ measured without ¹³C-enrichment (Figure S3) shows no clear chemical shift for the C2 unit because of the low signal-to-noise ratio.

The 2D INADEQUATE spectrum of the ¹³C-enriched $[Sc_3C_2@C_{80}(I_h)]^-$ sample shows a cross-peak between the two chemical shifts of the $C_{80}(I_h)$ cage (Figure S4 in the Supporting Information). Moreover, the chemical shift of the C₂ unit has no cross-peak with the two chemical shifts of the $C_{80}(I_h)$ cage, as in the case of $Sc_2C_2@C_{82}(C_{3\nu})$ (Figure S4). This result confirms that the C₂ unit is also separated from the fullerene

Two chemical shifts at $\delta = 267.0$ (C_a) and 365.7 ppm (C_b) were calculated at the B3LYP-GIAO level^[18] for the C₂ unit of $[Sc_3C_2@C_{80}(I_h)]^-$ by using the most stable optimized structure $(C_s \text{ symmetry})$ (Figure S5 in the Supporting Information).^[5] The observed chemical shift of the C_2 unit at $\delta = 328.3$ ppm shows the average of the two calculated values because of the rotation of the C_2 unit within the C_{80} cage.

We have recently synthesized the adamantylidene derivative $Sc_3C_2@C_{80}(I_h)(Ad)$ and determined its structure by Xray single-crystal analysis.^[5] ¹³C NMR spectra of [Sc₃C₂@ C₈₀(Ad)]⁻ were measured using the ¹³C-enriched sample. Two chemical shifts are observed at $\delta = 257.2$ and 384.4 ppm for the C2 unit in both proton-decoupled and proton-coupled modes, because the two carbon atoms are not equivalent, as shown by the X-ray crystal structures (Figure S6 in the Supporting Information). The two observed chemical shifts agree well with the calculated values of $\delta = 275.4$ (C_a) and 380.9 ppm (C_b) (for the C_a and C_b atoms, see Figure S7).

Experimental Section

15% ¹³C-enriched samples of $Sc_2C_2@C_{82}(C_{3\nu})$, $Sc_2C_2@C_{84}(D_{2d})$, and $Sc_3C_2@C_{80}(I_h)$ were prepared by the reported method. [24] $[Sc_3C_2@$ $C_{80}(I_h)$] was prepared chemically, as described before.^[5] [Cr(acac)₃] (acac = acetylacetonate) was used as a relaxation reagent for the 2D INADEQUATE and INVGATE NMR measurements of Sc₂C₂@ $C_{82}(C_{3\nu})$ and $Sc_2C_2@C_{84}(D_{2d})$. The ¹³C NMR spectra were measured at 125 and 150 MHz on a Bruker AVANCE-500 (with a CryoProbe system) and AVANCE-600 spectrometers. All calculations were performed with the Gaussian 03 program.^[18] Geometries were optimized with the hybrid density functional theory at the $B3LYP^{[25-27]}$ level with the effective core potential $^{[28]}$ and the (5s5p5d)/[4s4p3d] basis set for Sc, and the 6-31G(d) basis set^[29] for C and H. The ¹³C NMR chemical shifts were calculated by the B3LYP-GIAO[30] method.

Received: June 3, 2008

Published online: September 16, 2008

Communications

Keywords: carbides · density functional calculations · fullerenes · NMR spectroscopy · structure elucidation

- [1] J. R. Heath, S. C. O'Brien, Y. Liu, R. F. Curl, H. W. Kroto, F. K. Title, R. E. Smalley, J. Am. Chem. Soc. 1985, 107, 7779 7780.
- [2] Y. Chai, T. Guo, C. Jin, R. E. Haufler, L. P. F. Chibante, J. Fure, L. Wang, J. M. Alford, R. E. Smalley, J. Phys. Chem. 1991, 95, 7564-7568
- [3] Endofullerenes: A New Family of Carbon Clusters (Eds.: T. Akasaka, S. Nagase), Kluwer, Dordrecht, **2002**.
- [4] a) C.-R. Wang, T. Kai, T. Tomiyama, T. Yoshida, Y. Kobayashi, E. Nishibori, M. Takata, M. Sakata, H. Shinohara, *Angew. Chem.* **2001**, *113*, 411–413; *Angew. Chem. Int. Ed.* **2001**, *40*, 397–399; b) The ¹³C NMR chemical shift of the C₂ unit in Sc₂C₂@C₈₄ was observed at δ=91.99 ppm in Ref. [4a]. However, Wang has informed us that the chemical shift at δ=91.99 ppm is ascribed to an impurity.
- [5] Y. Iiduka, T. Wakahara, T. Nakahodo, T. Tsuchiya, A. Sakuraba, Y. Maeda, T. Akasaka, K. Yoza, E. Horn, T. Kato, M. T. H. Liu, N. Mizorogi, K. Kobayashi, S. Nagase, J. Am. Chem. Soc. 2005, 127, 12500 – 12501.
- [6] Y. Iiduka, T. Wakahara, K. Nakajima, T. Tsuchiya, T. Nakahodo, Y. Maeda, T. Akasaka, N. Mizorogi, S. Nagase, *Chem. Commun.* 2006, 2057 – 2059.
- [7] Y. Iiduka, T. Wakahara, K. Nakajima, T. Nakahodo, T. Tsuchiya, Y. Maeda, T. Akasaka, K. Yoza, M. T. H. Liu, N. Mizorogi, S. Nagase, Angew. Chem. 2007, 119, 5658-5660; Angew. Chem. Int. Ed. 2007, 46, 5562-5564.
- [8] M. Takata, M. Nishibori, M. Sakata, M. Inakuma, E. Yamamoto, H. Shinohara, *Phys. Rev. Lett.* 1999, 83, 2214–2217.
- [9] M. Takata, E. Nishibori, B. Umeda, M. Sakata, E. Yamamoto, H. Shinohara, *Phys. Rev. Lett.* 1997, 78, 3330 3333.
- [10] E. Nishibori, S. Narioka, M. Takata, M. Sakata, T. Inoue, H. Shinohara, ChemPhysChem 2006, 7, 345–348.
- [11] E. Nishibori, M. Ishihara, M. Takata, M. Sakata, Y. Ito, T. Inoue, H. Shinohara, *Chem. Phys. Lett.* **2006**, *433*, 120–124.
- [12] E. Nishibori, I. Terauchi, M. Sakata, M. Takata, Y. Ito, T. Sugai, H. Shinohara, J. Phys. Chem. B 2006, 110, 19215–19219.

- [13] T. Inoue, T. Tomiyama, T. Sugai, T. Okazaki, T. Suematsu, N. Fujii, H. Utsumi, K. Nojima, H. Shinohara, J. Phys. Chem. B 2004, 108, 7573 7579.
- [14] T. Inoue, T. Tomiyama, T. Sugai, H. Shinohara, Chem. Phys. Lett. 2003, 382, 226–231.
- [15] a) A. Bax, R. Freeman, J. Magn. Reson. 1980, 41, 507 511; b) A. Bax, R. Freeman, S. T. Kempsell, J. Am. Chem. Soc. 1980, 102, 4849 4851.
- [16] T. Tsuchiya, T. Wakahara, Y. Maeda, T. Akasaka, M. Waelchli, T. Kato, H. Okubo, N. Mizorogi, K. Kobayashi, S. Nagase, Angew. Chem. 2005, 117, 3346-3349; Angew. Chem. Int. Ed. 2005, 44, 3282-3285.
- [17] M. Yamada, T. Wakahara, Y. Lian, T. Tsuchiya, T. Akasaka, M. Waelchli, N. Mizorogi, S. Nagase, K. M. Kadish, *J. Am. Chem. Soc.* 2006, 128, 1400 1401.
- [18] M. J. Frisch, et al., Gaussian 03, Revision C. 01, Gaussian Inc., Wallingford, CT, 2004.
- [19] T. T. Morrison, R. N. Boyd, Organic Chemistry, Allyn and Bacon, Boston, 1980, pp. 250.
- [20] M. St. Clair, W. P. Schaefer, J. E. Bercaw, Organometallics 1991, 10, 525-527.
- [21] T. M. Duncan, Inorg. Chem. 1989, 28, 2663-2668.
- [22] T. Akasaka, S. Nagase, K. Kobayashi, M. Waelchli, K. Yamamoto, H. Funasaka, M. Kako, T. Hoshino, T. Erata, *Angew. Chem.* 1997, 109, 1716–1719; *Angew. Chem. Int. Ed. Engl.* 1997, 36, 1643–1645.
- [23] For $C_{84}(D_{2d})$, there are two D_{2d} isomers that satisfy the ¹³C NMR spectrum, IPR isomer **23** and non-IPR isomer **28620**. Isomer **28620** can be excluded from the present INADEQUATE NMR spectral analysis.
- [24] H. Shinohara, H. Sato, M. Ohkohchi, Y. Ando, T. Kodama, T. Shida, T. Kato, Y. Saito, *Nature* **1992**, *357*, 52 54.
- [25] A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100.
- [26] A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
- [27] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789.
- [28] P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299-310.
- [29] W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257 – 2261.
- [30] K. Wolinski, J. F. Hilton, P. Pulay, J. Am. Chem. Soc. 1990, 112, 8251 – 8260.